Priority Queues
Y Q o

Ry
Q/
I‘\ei

© 2004 Goodrich, Tamassia Priority Queues

Priority Queue ADT (§ 7.1.3)

@ A priority queue stores a # Additional methods
collection of entries = min()
@ Each entry is a pair returns, but does not
(key, value) remove, an entry with
i S smallest key
@ Main methods of the Priority . size(), SEmpty()
Queue ADT ! P
= insert(k, x)
inserts an entry with key k
and value x @ Applications:
= removeMin() = Standby flyers
removes and returns the = Auctions
entry with smallest key « Stock market
© 2004 Goodrich, Tamassia Priority Queues

Total Order Relations (§ 7.1.1)

Keys in a priority 4 Mathematical concept
queue can be of total order relation <
arbitrary objects = Reflexive property:
on which an order x<x
is defined = Antisymmetric property:

Two distinct XEPAYSX=X=y

= Transitive property:

entries in a XS<PAPSIm xo

priority queue can
have the same
key

© 2004 Goodrich, Tamassia Priority Queues

Entry ADT (§ 7.1.2)

An entry in a priority 4 As a Java interface:
queue is simply a key X%
value pair * Interface for a key-value
Priority queues store * pair entry
entries to allow for o
efficient insertion and public interface Entry {
removal based on keys public Object key();
Methods: public Object value();
= key(): returns the key ¥

for this entry

» value(): returns the
value associated with
this entry

© 2004 Goodrich, Tamassia Priority Queues

@ A comparator encapsulates
the action of comparing two
objects according to a given
total order relation

@ A generic priority queue

uses an auxiliary

comparator

The comparator is external

to the keys being compared

When the priority queue
needs to compare two keys,
it uses its comparator

@

© 2004 Goodrich, Tamassia Priority Queues

Comparator ADT (§ 7.1.2)

The primary method of the
Comparator ADT:

compare(X, y): Returns an
integer /such that / <0 if @
<bi=0ifa=hHand/>0
if @ > b, an error occurs if @
and b cannot be compared.

Example Comparator

Lexicographic comparison of 2-D
points:

/** Comparator for 2D ﬁoints under the
standard lexicographic order. */

public class Lexicographic implements
Comparator {

int xa, ya, xb, yb;
public int_compare(Object a, Object b)
throws ClassCastException {

xa = ((Point2D) a).getX();

ya = ((Point2D) a).getY();

xb = ((Point2D) b).getX();

yb = ((Point2D) b).getY();

Point objects:

/** Class representing a point in the
plane with integer coordinates */
public class Point2D {
protected int xc, yc; // coordinates
public Point2D(int x, int y) {
XC = X;
yc=y;

}
public int getX() {
return xc;

if (xa!=xb) }
return (xb - xa); publicint getY() {
else return yc;
return (yb - ya); ¥
} b3
b
© 2004 Goodrich, Tamassia Priority Queues 6

Priority Queue Sorting (§ 7.1.4)

@ We can use a priority
queue to sort a set of
comparable elements

1. Insert the elements one
by one with a series of
insert operations

2. Remove the elements in
sorted order with a series
of removeMin operations

@ The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQO-Sort(S, C)

Input sequence §, comparator C
for the elements of §
Output sequence S sorted in
increasing order according to C
P < priority queue with
comparator C
while —S.isEmpty ()
e < S.removeFirst ()
P.insert (e, 0)
while —P.isEmpty()
e < P.removeMin().key()
S.insertLast(e)

© 2004 Goodrich, Tamassia Priority Queues

© 2004 Goodrich, Tamassia

Implementation with an
unsorted list

@—C06—0200C—0

Performance:

= insert takes O(1) time
since we can insert the
item at the beginning or
end of the sequence

= removeMin and min take
0O(n) time since we have
to traverse the entire
sequence to find the
smallest key

Sequence-based Priority Queue

Implementation with a
sorted list

O—20—0C—©B=0

#® Performance:

= insert takes O(n) time
since we have to find the
place where to insert the
item

= removeMin and min take
O(1) time, since the
smallest key is at the
beginning

Priority Queues 8

Selection-Sort

Selection-Sort Example

- & Sequence S Priority Queue P
Input: (7,4,8,2,5,3)9) 0
@ Selection st is the variation of PQ sort where the
priority queue is implemented with an unsorted Phase 1
(a) (48,2,5,3,9) (7)
sequence (b) (82,539 74)
Running time of Selection ot - - -
1. Inserting the elements into the priority queue with n insert (@) 0 : (7,4,8,2,5,3,9)
operations takes O(n) time
2. Removing the elements in sorted order from the priority Phase 2
queue with » removeMin operations takes time Egg 8)3) g,;l,g,g,gf)
proportional to 5 © (2:3/ 4 (7:8:5:9/)
Tat.te (d) (23/4,5) (7,8,9)
Selection @t runs in O(n?) time (e) (2,3,45,7) (8,9)
0] (2,34,5,7,8) 9)
(9) (2,3/4,5,7,8,9) 0
© 2004 Goodrich, Tamassia Priority Queues 9 © 2004 Goodrich, Tamassia Priority Queues 10
Insertion-Sort Insertion-Sort Example

Insertion st is the variation of P sort where the
priority queue is implemented with a sorted
sequence

Running time of Insertion ort:
1. Inserting the elements into the priority queue with n
insert operations takes time proportional to
1+2+..+n
2. Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time

Insertion ot runsin O(n?) time

© 2004 Goodrich, Tamassia Priority Queues 11

& Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) 0O

Phase 1
@ (4,8,2,5,3,9) (7)
(b) (8,2,53,9) (4,7)
(©) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9 (24,5,7,8)
() 9 (2,34,5,7,8)
(g) () (2/3/4/5/7/8/9)

Phase 2
@ (2) (3,4,5,7,8)9)
(b) (2,3) (4,5,7,8,9)
©) (23457,89) 0

© 2004 Goodrich, Tamassia Priority Queues

12

In-place Insertion-sort

Instead of using an 00600
external data structure, ’
we can implement O—@—02—0B—®
selection-sort and
insertion-sort in-place 9’9’9 G—@

& A portion of the input
sequence itself serves as G 9‘9‘9 D
the priority queue

@ For in-place insertion-sort 29000
= We keep sorted the initial @—C—60G60

portion of the sequence

= We can use swaps O—2—C@—@—0G
instead of modifying the
sequence O—2@—0B—@—06)

© 2004 Goodrich, Tamassia Priority Queues

13

