
Priority Queues 1© 2004 Goodrich, Tamassia

Priority Queues

Priority Queues 2© 2004 Goodrich, Tamassia

Priority Queue ADT (§ 7.1.3)

A priority queue stores a
collection of entries
Each entry is a pair
(key, value)
Main methods of the Priority
Queue ADT

insert(k, x)
inserts an entry with key k
and value x
removeMin()
removes and returns the
entry with smallest key

Additional methods
min()
returns, but does not
remove, an entry with
smallest key
size(), isEmpty()

Applications:
Standby flyers
Auctions
Stock market

Priority Queues 3© 2004 Goodrich, Tamassia

Total Order Relations (§ 7.1.1)

Keys in a priority
queue can be
arbitrary objects
on which an order
is defined
Two distinct
entries in a
priority queue can
have the same
key

Mathematical concept
of total order relation ≤

Reflexive property:
x ≤ x
Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y
Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z

Priority Queues 4© 2004 Goodrich, Tamassia

Entry ADT (§ 7.1.2)
An entry in a priority
queue is simply a key-
value pair
Priority queues store
entries to allow for
efficient insertion and
removal based on keys
Methods:

key(): returns the key
for this entry
value(): returns the
value associated with
this entry

As a Java interface:
/**

* Interface for a key-value
* pair entry

**/
public interface Entry {

public Object key();
public Object value();

}

Priority Queues 5© 2004 Goodrich, Tamassia

Comparator ADT (§ 7.1.2)
A comparator encapsulates
the action of comparing two
objects according to a given
total order relation
A generic priority queue
uses an auxiliary
comparator
The comparator is external
to the keys being compared
When the priority queue
needs to compare two keys,
it uses its comparator

The primary method of the
Comparator ADT:

compare(x, y): Returns an
integer i such that i < 0 if a
< b, i = 0 if a = b, and i > 0
if a > b; an error occurs if a
and b cannot be compared.

Priority Queues 6© 2004 Goodrich, Tamassia

Example Comparator
Lexicographic comparison of 2-D
points:

/** Comparator for 2D points under the
standard lexicographic order. */

public class Lexicographic implements
Comparator {

int xa, ya, xb, yb;
public int compare(Object a, Object b)
throws ClassCastException {
xa = ((Point2D) a).getX();
ya = ((Point2D) a).getY();
xb = ((Point2D) b).getX();
yb = ((Point2D) b).getY();
if (xa != xb)

return (xb - xa);
else

return (yb - ya);
}

}

Point objects:

/** Class representing a point in the
plane with integer coordinates */

public class Point2D {
protected int xc, yc; // coordinates
public Point2D(int x, int y) {

xc = x;
yc = y;

}
public int getX() {

return xc;
}
public int getY() {

return yc;
}

}

Priority Queues 7© 2004 Goodrich, Tamassia

Priority Queue Sorting (§ 7.1.4)
We can use a priority
queue to sort a set of
comparable elements
1. Insert the elements one

by one with a series of
insert operations

2. Remove the elements in
sorted order with a series
of removeMin operations

The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

comparator C
while ¬S.isEmpty ()

e ← S.removeFirst ()
P.insert (e, 0)

while ¬P.isEmpty()
e ← P.removeMin().key()
S.insertLast(e)

Priority Queues 8© 2004 Goodrich, Tamassia

Sequence-based Priority Queue
Implementation with an
unsorted list

Performance:
insert takes O(1) time
since we can insert the
item at the beginning or
end of the sequence
removeMin and min take
O(n) time since we have
to traverse the entire
sequence to find the
smallest key

Implementation with a
sorted list

Performance:
insert takes O(n) time
since we have to find the
place where to insert the
item
removeMin and min take
O(1) time, since the
smallest key is at the
beginning

4 5 2 3 1 1 2 3 4 5

Priority Queues 9© 2004 Goodrich, Tamassia

Selection-Sort

Selection- sort is the variation of PQ- sort where the
priority queue is implemented with an unsorted
sequence
Running time of Selection- sort:
1. Inserting the elements into the priority queue with n insert

operations takes O(n) time
2. Removing the elements in sorted order from the priority

queue with n removeMin operations takes time
proportional to

1 + 2 + …+ n
Selection- sort runs in O(n2) time

Priority Queues 10© 2004 Goodrich, Tamassia

Selection-Sort Example
Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
..
. . .
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

Priority Queues 11© 2004 Goodrich, Tamassia

Insertion-Sort
Insertion- sort is the variation of PQ- sort where the
priority queue is implemented with a sorted
sequence
Running time of Insertion- sort:

1. Inserting the elements into the priority queue with n
insert operations takes time proportional to

1 + 2 + …+ n
2. Removing the elements in sorted order from the priority

queue with a series of n removeMin operations takes
O(n) time

Insertion- sort runs in O(n2) time

Priority Queues 12© 2004 Goodrich, Tamassia

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
..
. . .
(g) (2,3,4,5,7,8,9) ()

Priority Queues 13© 2004 Goodrich, Tamassia

In-place Insertion-sort
Instead of using an
external data structure,
we can implement
selection-sort and
insertion-sort in-place
A portion of the input
sequence itself serves as
the priority queue
For in-place insertion-sort

We keep sorted the initial
portion of the sequence
We can use swaps
instead of modifying the
sequence

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

